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Abstract In this paper, we study a new class of Caputo type sequential fractional
differential inclusions with nonlocal Riemann-Liouville fractional integral boundary
conditions. The existence of solutions for the given problem is established for the cases
of convex and non-convex multivalued maps by using standard fixed point theorems.
The obtained results are well illustrated with the aid of examples.
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1 Introduction

In this paper, we investigate the existence of solutions of a sequential fractional
differential inclusion:

€D + kD Vx(t) € F(t, x(t), te[0,1], 2<a<3, (1.1)
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supplemented with the boundary conditions

x(0)=0, x'(0)=0 x()—a/nmx(s)ds (1.2)
= =0 o=l T ’ |

where D denotes the Caputo fractional derivative of order ¢, 0 < n < ¢ < 1,
F :[0,1] x R — P(R) is a multivalued map, P(R) is the family of all nonempty
subsets of R, and &, a, B are appropriate positive real constants.

Here, we emphasize that the integral boundary conditions (1.2) can be understood
in the sense that the value of the unknown function at an arbitrary position ¢ € (5, 1)
is proportional to the Riemann-Liouville fractional integral of the unknown function:

n (n=s)f~!
0 T®
dition reduces to the usual form of nonlocal integral condition: x(¢) = a fo" x(s)ds.

Fractional differential equations have been of great interest recently. It owes to the
intensive development of the theory of fractional calculus as well as its applications in
various scientific fields such as physics, biomathematics, blood flow phenomena, ecol-
ogy, environmental issues, viscoelasticity, aerodynamics, electro-dynamics of com-
plex medium, electrical circuits, electron-analytical chemistry, control theory, etc. For
further details, see [1-6]. Some recent results concerning fractional boundary value
problems can be found in a series of papers [7-21].

There is a close connection between the sequential fractional derivatives (see page
209 in [22]) and the non sequential Riemann—Liouville derivatives [23,24]. For some
recent work on sequential fractional differential equations, we refer the reader to the
papers [25-27]. In [28,29], the authors studied sequential fractional differential equa-
tions with different kinds of boundary conditions. Recently, the existence of solutions
for higher-order sequential fractional differential inclusions with nonlocal three-point
boundary conditions has been discussed in [30]. However, to the best of our knowledge,
the study of sequential fractional differential equations supplemented with nonlocal
Riemann-Liouville type fractional integral boundary conditions has yet to be initiated.

The paper is organized as follows. The first result dealing with non-convex valued
maps relies on a fixed point theorem for contractive multivalued maps due to Covitz
and Nadler. The second result involving convex valued maps is based on the nonlinear
alternative of Leray—Schauder type while in the third result, we combine the nonlinear
alternative of Leray—Schauder type for single-valued maps with a selection theorem
due to Bressan and Colombo for lower semicontinuous multivalued maps with non-
empty closed and decomposable values. The methods used in our analysis are well
known, however their exposition in the framework of problem (1.1)—(1.2) is new.

x(s)ds, where n € (0, ¢). Further, for 8 = 1, the integral boundary con-

2 Preliminaries

Let us recall some basic definitions on multi-valued maps [31,32].

For a normed space (X, || - ||), let Py (X) = {Y € P(X) : Y is closed}, Pp(X) =
{Y € P(X) : Y is bounded}, Pcp(X) = {Y € P(X) : Y is compact}, and Py (X) =
{Y e P(X) : Y is compactand convex}. A multi-valued map G : X — P(X) is
convex (closed) valued if G(x) is convex (closed) for all x € X. The map G is
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Caputo type sequential fractional differential inclusions 159

bounded on bounded sets if G(B) = U,cgG(x) is bounded in X for all B € Pp(X)
(i.e. sup, cgfsup{ly| : y € G(x)}} < 00). G is called upper semi-continuous (u.s.c.)
on X if for each xg € X, the set G(xp) is a nonempty closed subset of X, and if for
each open set N of X containing G(x¢), there exists an open neighborhood N of x
such that G(MVy) € N. G is said to be completely continuous if G(B) is relatively
compact for every B € Pp(X). If the multi-valued map G is completely continuous
with nonempty compact values, then G is u.s.c. if and only if G has a closed graph,
i.€., Xy = X4, Yn = Vs, Yn € G(xp,) imply y, € G(x,). G has a fixed point if there
isx € X suchthatx € G(x). The fixed point set of the multivalued operator G will be
denoted by FixG. A multivalued map G : [0, 1] — P, (R) is said to be measurable if
for every y € R, the function

t — d(y, G®)) = inf{ly — z| : z € G(1)}

is measurable.
For each y € C([0, 1], R), define the set of selections of F by

Spy ={ve LY([0, 11, R) : v(r) € F(t, y(1)) forae. r € [0, 1]}.

We recall now some basic definitions of fractional calculus [1,2].

Definition 2.1 For (n — 1)—times absolutely continuous function g : [0, c0) — R,
the Caputo derivative of fractional order ¢ is defined as

1 13
“Dig(t) = F(n——q)/o (t =) 1gMW(s)ds, n—1<qg<n, n=[ql+1,

where [¢] denotes the integer part of the real number g.

Definition 2.2 The Riemann-Liouville fractional integral of order ¢ is defined as
s®

T(g) Jo (t—s)'—4

I1g(t) = ds, q >0,

provided the integral exists.

Definition 2.3 Sequential fractional derivative for a sufficiently smooth function g(#)
due to Miller-Ross [22] is defined as

DPg(t) = D' D% ... D%g(1), 2.1

where § = (81, ..., &) is a multi-index.

In general, the operator D? in (2.1) can either be Riemann—Liouville or Caputo or any
other kind of integro-differential operator. For instance,

g(t), n—1<gq<n,

ol ) Lil fy I—i.lbl 2 prine




160 B. Ahmad, S. K. Ntouyas

where D~""~% is the fractional integral operator of order n — q. Here we emphasize
that D=7 f(t) = I? f(t), p = n — q; for more details, see page 87 [1].
To define the solution for the problem (1.1)—(1.2), we need the following lemma.

Lemma 2.4 For h € C([0, 1], R), the integral solution of the linear equation
D% +k°D* Hx(t)=h@t), te[0,1], 2 <a <3, 2.2)
supplemented with the boundary conditions (1.2) is given by

_ —kt gl
x(t)=(kt 1+e )|:a/’7 n—ys)
0

A N0

N m _ a2
X (/ e_k(s_m)( uh(r)dt)dm)ds
0 o TIle—-1
¢ S (o _ =2
_ / e—k(;—s)( (Gl h(t)dl’)dSi|
0 INCERY)

0
—k(t—s) Y(s =) -2 )
+/O . ( ey Mo ).

2.3)

where

p+1
A:k;—1+e—kf—%ﬂ)(%—— /(n 5)p1 _ksds)yéO 2.4)

Proof Solving (2.2), we obtain

by _ b _
?(1 —e kt)+ﬁ(kt—1+e ke

t K a—2
—k(i—s) (s—1)
+/0 e ( e h(r)dr)ds, 2.5)

x(1) = boe ¥ +

where by, by, by are unknown arbitrary constants. Using the boundary conditions (1.2)
in (2.5), we find that bg = 0, by = 0 and

B k2 n (7’ _ s)ﬂ—l s k(s—m) m (m _ .L.)oz—Z
= Z[“/o N0 (/0 ‘ ( 0o T@-1 h(”d’)d’")‘”
¢ o s (s — .[)a—Z
_ k(& —s) A
/0 e ( . T@—1) h(r)dr)ds].

Substituting the values of by, b1 and by in (2.5) yields the solution (2.3). This
completes the proof. O

ssed in the form of the following lemma.
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Lemma 2.5 For h € C([0, 11, R) with ||h|| = sup,¢[o 1) |h(2)], we have

j UL —k(s—m)( " (m—0)*? ) )
" /o r(p) (/0 ¢ | Ty T Jdm Jds

a+p—1 h
< m(nk+e = DAl

.. _ (s —1)* 2 ¢ _
k(& —s) _ okt
(ii) / (/ ) h(f)df)ds < qu(Ol)(l e )|All.
—k(t—s) (s — f)a -2 ) 1 _ —k
(iii) / (/ Fa—1) —————h(v)dt |)ds| < kl“(a)(l e DAl

3 Existence results

Definition 3.1 A function x € AC3([0, 1], R) is said to be a solution of the boundary
N (n— )81
value problem (1.1)—(1.2) if x(0) = 0, x’(0) =0, x(¢) = a/ %x(s)ds,
0

and there exists function v € Sr,, such that

. —kt Y
x(t)=(kt 1+e )|:a/’7 (n—ys)
0

A N0

s m _ a2
X (/ e_k(s_m)( %v(r)dt)dm)ds
o _

3.1
_ \a—2
/ —k(¢=9) / (s —7) ———v(r)dt )ds
Fa—1)
a2
+/ e_k(t_s)( G2k v(r)dt)ds.
0 o [le—1)
For the sake of convenience, we set
(kt — 1+ ) 1,
p=sup |—— | =— (€ ""+k—-1), (3.2)
te[OI,)l] A (A
and
|a|na+ﬂ—1 i ;—a—l(l _ e—k{) 1— e—k
A=pl——"-—I\k 1 . 3.3
plkZF(a)r(ﬂ)( nte )+ KT(@) e G

3.1 The Lipschitz case

We prove the ex1stence of solutlons for the problem (1.1)—(1.2) with a nonconvex
e xed point theorem for multivalued map due to
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Let (X, d) be a metric space induced from the normed space (X; || - ||). Consider
Hy : P(X) x P(X) - RU {oo} given by

H;(A, B) = max [supd(a, B),supd(A, b)] ,
acA beB

where d(A, b) = inf,ea d(a; b) and d(a, B) = infpep d(a; b). Then (Pp,c1(X), Ha)
is a metric space and (P, (X), Hy) is a generalized metric space (see [34]).

Definition 3.2 A multivalued operator N : X — P (X) is called:
(a) y—Lipschitz if and only if there exists y > 0 such that

H;(N(x), N(y)) < yd(x,y) foreachx,y € X;

(b) a contraction if and only if it is y —Lipschitz with y < 1.

Lemma 3.3 [33] Let (X, d) be a complete metric space. If N : X — P(X) is a
contraction, then FixN # (.

Theorem 3.4 Assume that:

(Ap) F:[0,1] xR — P, (R) is such that F (-, x) : [0, 1] — Pep(R) is measurable
for each x € R.

(A2) Hy(F(t,x), F(t,x)) < q(t)|x — x| for almost all t € [0, 1] and x, x € R with
g € C([0, 11, R*) and d(0, F(t,0)) < q(¢t) for almost all t € [0, 1].

Then the boundary value problem (1.1)—(1.2) has at least one solution on [0, 1] if

lgllA <1, ie.
a1 ko (1 —e )] 1—ek
||Q||[P|:m(k’7 te - 1) + kT () ] + kT (o) ] <!

Proof Define the operator Qf : C([0, 1], R) — P(C([0, 1], R)) by

heC(0,1,R):
[kt — 1 +e—kt) |:a /n n— S)ﬁ—l
A o I'B)

s ks—m) m (m _ .L,)o:—2 ) )
Qp(v) = o X(/() e ( ; Te-1 v(t)dt )dm )ds
—/{ e_k(g_s)( ' wv(r)dr)ds]
0 o 'le=1

t s _ a2
+/ e_k(’_x)( uv(r)a’v:)a’s, forv € Spy.
0 o Ile—=1

Observe that the set Sg x is nonempty for each x € C([0, 1], R) by the assumption

ol Ll ‘”LlLI

e Theorem II1.6 [35]). Now we show that
of Lemma 3.3. To show that Qp(x) €
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P ((C[O, 1], R)) for each x € C([0, 1], R), let {u,},>0 € QF(x) be such that u,, —
u (n — oo) in C([0, 1], R). Then u € C([0, 1], R) and there exists v, € Sr  such
that, for each r € [0, 1],

(kt — 1 4 ¥ [a /'7 (n—s)P~1
A o I'®

K m _ a2
x(/ k(s”‘)( uv,,(r)dr)dm)ds
o [l—-1
_ a2
/ —k(¢— s)(/ (s —7) Un(t)df)ds}

_ a2
+/O e—k(’—S)( i —(?(a? m Un(T)dT)dS.

As F has compact values, we pass onto a subsequence (if necessary) to obtain that
v, converges to v in Ll([O, 1], R). Thus, v € SF x and for each ¢ € [0, 1], we have

u,(t) =

(kt — 1+ k1) [a /'I (n —s)P~!
A 0 r

s m _ a2
x(/ —k(s—m)( —(n;( 2 D v(T)dT)dm)ds
0
_ a2
/ - s)( G T_)l) v(t)dr)ds:|

t a—2
s [FG=D )
+ [ e ———— v(r)drt )ds.
/o ( o Nae—-1
Hence, u € Qr(x).

Next we show that there exists § < 1 such that

u,(t) = u(t) =

Hy(Qp(x), Qp(F) < 8llx — %|| foreach x, ¥ € AC'([0, 1], R).

Letx, X € ACL([0, 1], R) and h; € S (x). Then there exists v; (¢) € F(z, x(¢)) such
that, for each r € [0, 1],

_ —k Y
o= H1re ) t)[a/"—(” il
A T

K m _ a2
X(‘/O e—k(s—m)( ; %vl(r)dt)dm)ds
¢ K a2
_/0 e—k(;—s)(/o —(;(af_)l) vl(t)dt)ds]
t s _.L,)a—2 )
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By (A»), we have
Hy(F(t,x), F(1, X)) < q@®)]x(1) — x(@)|.
So, there exists w € F (¢, x(t)) such that
lvi () —w| < qgO]x(®) —x(®)], r€l0,1].
Define U : [0, 1] — P(R) by
U ={weR:|vi(1) —w| = q@®)|x@) —x(0)]}.

Since the multivalued operator U ()N F (¢, X (¢)) is measurable (Proposition I11.4 [35]),
there exists a function v, (¢) which is a measurable selection for U (1) N F (¢, x(¢)). So

va(t) € F(t, x(t)) and foreach ¢ € [0, 1], we have |v1 () —va(2)| < g(@®)|x(t) — x(1)].
For each ¢ € [0, 1], let us define

_ —k _ \B-1
hxn=5ﬁ—iii—gk/m9_iL_
A o TP

s m _ a2

X(/O e—k(s—m)(/o %vz(s)dr)dm)ds
¢ s N

_/0 e—k(g—S)( A —(f_(at) D vz(t)d‘f)dS:|

s a—2
+/() o k— s)( \ (s( _)1) uZ(r)dt)ds.
(kt — 1+ e

[ 020
A 0 ')
s —k(s - m (m_ )01—2
X o ﬁh)l(f) — U2(T)|df dm )ds
a2
/ k(= S)(/ (s —7) |v1(r)—v2(r)|dr)ds]
_ a2
/ k(= S)(/ (s =7 |v1(r)—v2(r)|d1)ds
" (n— )P 1(/ —k(s—m)
SPD”A re ¢
m (m _ .L,)ot—2
X(/O mlvl(t) —vz(t)|dt)dm)ds

¢ s a2
(a? D lvi(t) — vz(‘r)|d‘t)ds]

Thus,

|h1(t) — h2(D)] <
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t s _ a2
+/0 e—“’—”( ; %m(r)—m(mdr)ds

MNa-1)
|a|na+ﬂ—1 —k {a_l(l _e—kg)
= ”q"[”[ﬂmmr(ﬁ) (kn+e = 1)+ = ]
1 —e* )
+T(O{)]”x —x|.

Hence,

a+p—1 a=l(] — k¢
lhy — hall < ||q||[p[%m(kﬂ+e‘k" —1)+ — Iil"(a)e )]

1—e*k _
+ x — x|
o

Analogously, interchanging the roles of x and X, we obtain

Hy(Q2F(x), QF (X))

jaly+p=! R e A T
§||Q||[P|:m(kn+e —1)+ KC @) :|+ " ]llx—x”.

Since QF is a contraction, it follows by Lemma 3.3 that QF has a fixed point x
which is a solution of (1.1)—(1.2). This completes the proof. m]

3.2 The upper semicontinuous case

In Theorem 3.4 the multivalued F may have convex or nonconvex values. In the
case when F has convex values we can prove an existence result based on nonlinear
alternative of Leray—Schauder type.

Definition 3.5 A multivalued map F : [0, 1] x R — P(R) is said to be Carathéodory
if

(i) t —> F(t, x) is measurable for each x € R;
(if) x —> F(t, x) is upper semicontinuous for almost all ¢ € [0, 1];

Further a Carathéodory function F is called L' —Carathéodory if
(iii) for each p > 0, there exists ¢, € L'([0, 1], R") such that

[1F (2, x)|| = sup{lv] : v € F(z, )} < ¢ (1)

for all ||x|| < p and for a.e.t € [0, 1].

r(G) ={(x,y) e X xY,y e G(x)} and
er-semicontinuity.

@ Springer
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166 B. Ahmad, S. K. Ntouyas

Lemma 3.6 [31, Propositionl.2] IfG : X — Py (Y) is u.s.c., then Gr(G) is a closed
subset of X x Y i.e., for every sequence {x,},eN C X and {y,}pen C Y, if when
n— 00, Xn —> Xy, Yn —> Yx and y, € G(xy), then y, € G(x4). Conversely, if G is
completely continuous and has a closed graph, then it is upper semi-continuous.

Lemma 3.7 [36] Let X be a Banach space. Let F : [0, 1] x X — Pe¢p (X) be an
— Carathéodory multivalued map and let © be a linear continuous mapping from
LY([0, 1], X) to C([0, 11, X). Then the operator

O 0o SF : C([0, 1], X) = Pep,e(C(0, 1], X)), x> (@0 Sp)(x) = O(SFx)

is a closed graph operator in C ([0, 1], X) x C([0, 1], X).
For the forthcoming analysis, we need the following lemmas.

Lemma 3.8 (Nonlinear alternative for Kakutani maps)[37] Let E be a Banach space,
C a closed convex subset of E, U an open subset of C and 0 € U. Suppose that
F : U — Pep,o(C) is a upper semicontinuous compact map. Then either

(i) F has a fixed point in U, or
(ii) thereisau € 0U and A € (0, 1) withu € AF (u).

Now we are in a position to prove the existence of the solutions for the boundary
value problem (1.1)—(1.2) when the right-hand side is convex valued.

Theorem 3.9 Assume that:

(H)) F :[0,1] x R = PR) is L'-Carathéodory and has nonempty compact and
convex values;

(Hp) there exists a continuous nondecreasing function ¥ : [0, co) — (0, 00) and a
function ¢ € C([0, 1], R™) such that

I F (2, x)|lp:=supfly| : ye F(t, x)} < @)y (lx]l) foreach (t,x)€[0, 1]xR;
(H3) there exists a constant M > 0 such that

M
vanlgla ~

where A is defined by (3.3).
Then the boundary value problem (1.1)—(1.2) has at least one solution on [0, 1].

Proof Consider the operator Qr : C([0, 1], R) — P(C([0, 1], R)) defined in the
beginning of the proof of Theorem 3.4. We will show that Q2 satisfies the assumptions
of the nonlinear alternative of Leray—Schauder type. The proof consists of several
steps. As a first step, we show that Qr is convex for each x € C([0, 1], R). This step
is obvious since SF x is convex (F has convex values), and therefore we omit the proof.

maps bounded sets (balls) into bounded sets

et B, = {x € C([0,1],R) : [x]| < p}
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be a bounded ball in C([0, 1], R). Then, for each & € QF(x),x € By, there exists
v € SF x such that

_ —kt _ \B8-1
hee) = (kt —1+e )[a/'7 (n—s)
0

A I'(B)
s m _ a2
X(/O e—k(s—m)( i (nlz(a r—)_l) v(r)d‘[)dm)ds
4 s (S _ .L.)ot—2
_ —k(&—s)
/0 e ( . T@—1D v(r)dr)ds]
t s a—2
—k(t—s) (s—1)
+/0 e ( L Ta—1) v(r)dr)a’s.
Then for ¢ € [0, 1] we have
(kt = 1+ k1) [|a|/" (7 —5)f~!
A 0 r'(B)
s m _ a2
X(/o e—k(s—m)(/0 (”;(a T_)_l) |v(r)|dr)dm)ds
¢ K _ a2
+/ e—"@—f)(/ u|v(r)|dr)ds]
0 o -1
_ a2
/ —k(— s)(/ (s —1) |v(1:)|dt)ds
< p|:|a|/n M(/ —k(s— m)(/ (m ¢(t)¢(|lx|l)dr)dm)d
- o T'(B) 0

¢ k- S (s -0
kE—s)
+/0 e ( e ¢(7:)1//(||x||)dt)ds]

t K _ a2
+ /O e_k(t_s)( 0 u«/)(t)xmnx||>alr)ds

[h()| <

MNa-—-1)
< v(xDlel |p[%(lm+e‘k”—l)+ ga_llf;(_o;_kg)]wt 1];&_; ]
= (xDIBIA.
Consequently,
Il < ¥ (0IglIA.

at €2 unded sets into equicontinuous sets of C([0, 1], R).
For each h € QF(x), we obtain

@ Springer



168 B. Ahmad, S. K. Ntouyas

3l s _a—2
lh(t) — h(t)| < ‘ /0 (e—"“z—“—e—"(fl—”)( 0 %v(u)du)ds

t B B K (S _ u)a—Z
k(ty—s)
+/tl e "2 (/0 —F(Ol _— v(u)du)ds

‘k(tz — 1) e — ek [ /" (n—s)P!
+ a| ——
A o T®

s m a2
X (/ e_k(s_m)( uv(t)dt)dm)ds
0 o TD-1
¢ S (o _ a2
_/ e—k(;—s)( (Gl v(t)dt)dsj|
0 o Fle—-1
31 B _ 3 B K (S _ u)tX*Z
k(a—s) _ —k(ti—s)
/0 (e 2 e\ )( ; —F(a— 0 w(p)qb(u)du)ds

_ a2
+/t o —k(n— S)(/ (s —w 1//(P)¢(u)du)ds

’k(tz — 1) et - e—’“l [ /" (n—s)f!
+ a| ———
A o T®

N ks—m) m (m _ .L.)ot—2
X(/o e (/0 —F((x s 1//(p)¢(f)dt)dm)ds

4 B B s (S T)(X—Z
k(¢ —s) A
/0 e ( . T@-1) 1/f(p)¢(t)dt)ds] .

Obviously the right hand side of the above inequality tends to zero independently
of x € By astp —t; — 0. As Qp satisfies the above three assumptions, therefore it
follows by the Ascoli-Arzeld theorem that Qf : C([0, 1], R) — P(C([0, 1], R)) is
completely continuous.

In our next step, we show that Qr is upper semicontinuous. To this end it is sufficient
to show that Qr has a closed graph, by Lemma 3.6. Let x, — x4, h,, € Qr(x,) and
h;, — hy. Then we need to show that i, € Qp(x,). Associated with h,, € Qr(x,),
there exists v, € Sr y, such that for each t € [0, 1],

=<

_ —k Y
hatry = 1D t)[a/"—(” il
A T

K m _ a2
x(/o e_k(s_m)( : %vn(t)dr)dm)ds
¢ K a2
_/ e—k({—s)(/ (-1 vn(r)dr)ds}
0 o Dl—1

t K _ a2
(a? D vn(t)dt)ds.
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Thus it suffices to show that there exists v € SF y, such that for each t € [0, 1],

_ —kt RV
hoy = HZ1He) )[a / T
0

A I'(6)

K m _ a2

x(/ e_k(s_m)( —(m 2 v*(r)dt)dm)ds

0 o -1

¢ K _ a2
_ / k(=) / G0t )ds

0 o Dl—1)
t K a—2
ke [F =D ae)a
—|—/Oe ( . T@—D vy (T)dT )ds.
Let us consider the linear operator © : L! ([0, 11, R) — C([0, 1], R) given by

_ —k _ )81
=000 = Gt —1+e7) [a /]7 ="
0

A ()

s m _ a2
x( / e—k“—m)( uv(r)dr)dm)ds
0 o Tla—-1)
¢ s _ a2
_/ e—k({—s)(/ (s —1) v(t)dr)ds]
0 o Ma—-1)

t K _ a2
+/0 e_k(’_x)( 5 %v(t)dr)d&

H (kt — 1+ e ) [a /’7 (n —s)P1
A 0 r'B)

Yo ksem [ m— 0 _
X(/o e ( . T@—1 (v, (7) v*(t))dr)dm)ds

¢ s N
- /0 e—k@—x)( ; %(vn(r)—v*(r))dr)ds]

t s _ a2
+ /0 e—’“’—f)( /0 %(unm —v*(t))dr)ds
asn — oQ.

Thus, it follows by Lemma 3.7 that ® o Sr is a closed graph operator. Further, we
have h,(t) € ©(SF,x,). Since x, — X, therefore, we have

Observe that

17 (2) = hse (D] =

— 0,

hy(t) =

(kt — 1+ k) [ /ﬂ (n—s)P~!
A ‘b T TE
N m (m _ .L.)ot—2
Me—1)

v*(t)dr)dm)ds
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¢ K _ a2

- (] )]
t N _ a2

+/0 e—k(t—s)(/o —(;(ar_) D v*(t)d‘[)dS,

for some vy € SFy,.

Finally, we show there exists an open set U € C([0, 1], R) with x ¢ Qp(x) for
any A € (0,1)and all x € 0U. Let A € (0, 1) and x € AQF(x). Then there exists
v e Ll([O, 1], R) with v € SF x such that, for ¢ € [0, 1], we have

_ —kt _ \B-1
x(t)=)»(kt L+e )I:a/77 (7 —5)
0

A r'6)

s m _ a2
X (/ ek(sm)( uv(r)dt)dm)ds
0 o Tl@-1
I4 o s (S _ .L.)ot—2
_ k(& —s) 7
feen (] )]

t s _ a2
+ A /0 e—"“—f)( /0 %v(t)dr)ds.

Using the computations of the second step above we have

|a|na+ﬂ—1

()] < w(llxll)||¢ll[p[m(kn +e—1)
Ca_l(l _ e—k{):| 1— e_k]

kI («) k[ (o)
=Y lxIDlelA.

+

Consequently, we have

X1l

VxDISIA =

In view of (H3), there exists M such that ||x|| % M. Let us set
U={xeC(0,1],R) : |Ix|]| < M}.

Note that the operator Qr : U — P(C([0, 1], R)) is upper semicontinuous and
completely continuous. From the choice of U, there is no x € 90U such that x €
AQp(x) for some A € (0, 1). Consequently, by the nonlinear alternative of Leray—
Schauder type (Lemma 3.8), we deduce that Q2 has a fixed point x € U which is a
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3.3 The lower semicontinuous case

In the next result, F is not necessarily convex valued. Our strategy to deal with this
problem is based on the nonlinear alternative of Leray Schauder type together with
the selection theorem of Bressan and Colombo [38] for lower semi-continuous maps
with decomposable values.

Let X be a nonempty closed subset of a Banach space E and G : X — P(E) bea
multivalued operator with nonempty closed values. G is lower semi-continuous (l.s.c.)
if the set {y € X : G(y) N B # ¥} is open for any open set B in E. Let A be a subset
of [0, 1] x R. A is £ ® B measurable if A belongs to the o —algebra generated by all
sets of the form J x D, where J is Lebesgue measurable in [0, 1] and D is Borel
measurable in R. A subset A of L1([0, 1], R) is decomposable if for all u, v € A and
measurable J C [0, 1] = J, the function uy s + vx;_7 € A, where x 7 stands for
the characteristic function of 7.

Definition 3.10 Let Y be a separable metric space andlet N : ¥ — P(L!([0, 1], R))
be a multivalued operator. We say N has a property (BC) if N is lower semi-continuous
(I.s.c.) and has nonempty closed and decomposable values.

Let F : [0, 1] x R — P(R) be a multivalued map with nonempty compact values.
Define a multivalued operator F : C([0, 1] x R) — P(L] ([0, 11, R)) associated with
F as

F(x) = {we LY(0, 11, R) : w(t) € F(t, x(1)) forace. ¢ € [0, 1]},

which is called the Nemytskii operator associated with F.

Definition 3.11 Let F : [0, 1] x R — P(R) be a multivalued function with non-
empty compact values. We say F is of lower semi-continuous type (l.s.c. type) if its
associated Nemytskii operator F is lower semi-continuous and has nonempty closed
and decomposable values.

Lemma 3.12 [39] Let Y be a separable metric space and let N : Y —
P(L'([0, 11, R)) be a multivalued operator satisfying the property (BC). Then N
has a continuous selection, that is, there exists a continuous function (single-valued)
g:Y — LY([0, 11, R) such that g(x) € N(x) foreveryx €Y.

Theorem 3.13 Assume that (Hy), (H3) and the following condition holds:

(Hy) F :10,1] x R - P(R) is a nonempty compact-valued multivalued map such
that
(a) (t,x) —> F(t,x)is L ® B measurable,
(b) x —> F(t, x) is lower semicontinuous for each t € [0, 1];

Then the boundary value problem (1.1)—(1.2) has at least one solution on [0, 1].

Proof 1Tt follows from (H») and (Hy) that F is of Ls.c. type. Then from Lemma 3.12,
there_exists a_continuous_function f.: AC!([0,1],R) — L'([0, 1], R) such that
f(x) € F(x) forall x € C([0, 1], R).
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Consider the problem

x(0) =0, x'(0) =0, x(¢)=a 0" ("_S)ﬂilx(s)ds, B> 0. 3.4

l DY+ k°D* DHx(t) = f(x@), te[0,1], 2<a <3,
T

Observe that if x € AC3([0, 1], R) is a solution of (3.4), then x is a solution to
the problem (1.1)—(1.2). In order to transform the problem (3.4) into a fixed point
problem, we define the operator Q as

_ -k _ Bl
Qrxny = B e I)[a /"—(’7 $)
0

A r'(B)

K k(s—m) m (m _ .L.)ot—2 ) )
x(/o e (/0 —F(a — f(x(r)dt )dm )ds
¢ o s (S _ .L.)ot—2
_ k(¢ —s) LA
/0 e ( . T@—1D f(x(r))dt)ds]

t s _ a2
n /0 e—k(r—s)( /0 —(? (af_) 5 f(x(t))dt)ds.

It can easily be shown that Qf is continuous and completely continuous. The
remaining part of the proof is similar to that of Theorem 3.9. So we omit it. This
completes the proof. O

3.4 Examples
Consider the problem

[ D32(D +2)x(t) € F(t,x(t)), 0<t<1,

x(0) =0, x'(0)=0, x(1/2) = Ji* x(s)ds. 35)

Here, 0 =5/2, k=2, a=1, n=1/3, ¢ = 1/2, B = 1. With the given values,

we find that A =~ 0.346810, p ~ 3.273652, A ~ 0.607518.
(1) Consider the multivalued map F : [0, 1] x R — P(R) given by

1 2
F(t,x) = [0, §(t + 1)sinx + §:|

Then we have

1 2
sup{jo :v € F(r. )} = 2+ 1) + =

and

< z(t+ Dlx —x|.
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1 2
Let g(¢) = §(t + 1). Then ||q|| = 3 and |lg||A ~ 0.405012 < 1. Hence by

Theorem 3.4 the problem (3.5) has a solution.
(i) Let F : [0, 1] x R — P(R) is a multivalued map given by

o IxP o IxP
F(t, = —49 ,2 N — 41 .
*0 [e (|x|3+5+) ¢ (|x|3+3+

For v € F, we have

3 3
|[v(t)| < max (e_t (I)C:QC% + 9) ,2e7! (Ix:gcﬁ + 1)) <10e™’!, xeR.

Thus

IF @, )P :=sup{lyl : y € F(t,x)} < 10e™" = o)y (IIx]D,
with ¢ () = ™", Y (|lx])) = 10.

By the assumption (H3), we find that M > 6.07518. It follows by Theorem 3.9
that problem (3.5) has a solution.
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